Received: March 1, 1983; accepted: April 9, 1983

RADIOTRACERS IN FLUORINE CHEMISTRY. PART VIII. FLUORINE-18 EXCHANGE REACTIONS INVOLVING URANIUM(VI) OR URANIUM(V) FLUORIDES. EVIDENCE FOR SURFACE COMPLEXATION AND COMPARISONS

WITH LIGAND EXCHANGE REACTIONS [1]

DILIP K. SANYAL and JOHN M. WINFIELD

Chemistry Department, The University of Glasgow, Glasgow Gl2 8QQ (U.K.)

SUMMARY

Fluorine-18 exchange between UF₆, β -UF₅, or the UF₆ anion and [18 F]-labelled BF₃ or Me₃SiF is observed readily at ambient temperature and below, both under heterogeneous conditions and in acetonitrile solution. The behaviour of [18 F]-labelled BF₃,PF₅, or SF₄ towards β -UF₅ is significantly different from that towards α -UF₅, and suggests that small quantities of the Lewis acid fluorides are retained by β -UF₅. This is confirmed for SF₄ by 35 S studies. The lability of UV-F bonds with respect to substitution implied by the 18 F results, is confirmed by the formation of UV chlorofluoride mixtures from reactions of β -UF₅, or UF₅ in MeCN with BCl₃ or B[OCCl(CF₃)₂l₃. Complete replacement of F- by MeO-ligands in reactions between UF₅ and Me₃SiOMe in MeCN is not observed. An insoluble solid is formed whose stoichiometry is UF₃(OMe)₂.

INTRODUCTION

The radiotracer fluorine-18 is a useful means of probing fluorine exchange between covalent fluorides in situations where $^{19}{\rm F}$ n.m.r. spectroscopy is not applicable [2]. In this paper we describe the results of $^{18}{\rm F}$ exchange reactions between uranium hexafluoride, α - or β - uranium pentafluoride, or the hexafluorouranate(V) anion and various

Lewis acid fluorides under heterogeneous conditions, and in acetonitrile solution. Comparisons are made between $^{18}{\rm F}$ exchange and ligand substitution reactions, and evidence for the formation of surface complexes involving ${\it \beta-UF}_{\it S}$ is presented.

RESULTS AND DISCUSSION

Exchange reactions are discussed in terms of $^{18}{\rm F}$ transferred from the initially labelled, to the initially unlabelled reactant, the fraction of activity exchanged (f) being defined by the relationship

Fraction of 18 F in the initially unlabelled fluoride after reaction Fraction of total F(mg atom) in the initially unlabelled fluoride

Complete exchange corresponds to f=1. When f is > 1, an interaction additional to ^{18}F exchange has occurred, for example retention of $SF_3^{18}F$ by CsF [3]. This situation was encountered in many of the reactions studied in the present work; its observation is a reflection of the sensitivity of the radiotracer technique.

$\frac{^{18}\text{F Exchange between UF}_6 \text{ and BF}_2}{^{18}\text{F or Me}_3} \frac{^{18}\text{F}}{^{18}\text{F}}$ Exchange between UF $_6$ and [^{18}F]-labelled boron trifluoride is

Exchange between UF₆ and [¹⁸F]-labelled boron trifluoride is readily observed at room temperature, and the reaction is a good method for the preparation of UF₅¹⁸F. Representative results are given in Table 1. Values of f are > 0.88, and in one reaction f > 1 was observed. However, there was no evidence for any interaction apart from ¹⁸F exchange. Although these reactions were carried out nominally under heterogeneous conditions, the homogeneous, gas-phase reaction will be an important pathway. ¹⁸F exchange also occurs readily between UF₆ and trimethylsilyl [¹⁸F]-fluoride, and is observable at ca. 210 K (Table 1). Mixtures of these compounds are dark violet or brown, however there was no evidence for a chemical reaction at this temperature. A reaction does occur to a small extent at ambient temperature.

The behaviour of UF $_6$ towards Me $_3$ Si 18 F may be compared with our earlier study of hexafluoride, Et $_3$ Si 18 F reactions [2] to obtain a qualitative order of hexafluoride bond lability towards R $_3$ Si 18 F. The order is UF $_6$ $^{\circ}$ MoF $_6$ > WF $_6$ > TeF $_6$. The behaviour of BF $_3$ towards

 ${\rm Et_3Si}^{18}{\rm F}$ is intermediate between that of MoF $_6$ and WF $_6$. In view of the rapid exchange between UF $_6$ and BF $_2$ F or Me $_3{\rm Si}^{18}{\rm F}$, a detailed mechanistic study was not attempted, but it can be argued that the lability of a UVI-F bond is the result both of the effective Lewis acid centre, UVI, and of the donor properties of F bound to UVI.

TABLE I $$^{18}{\rm F}$$ Exchange reactions between UF $_{6}$ and BF $_{2}^{18}{\rm F}$ or Me $_{3}{\rm Si}^{18}{\rm F}$

UF ₆	BF ₂ ¹⁸ F or	Me ₃ Si ¹⁸ F	Time	Temperature	Fraction exchanged
mmol	mmo	1	min	K	f
0.91	BF ₂ ¹⁸ F	1.33	45	292	0.94
1.74	$_{\mathrm{BF}_{2}}^{\mathrm{18}}$ F	0.28	45	293	0.88
0.74	$_{\mathrm{BF}_{2}}^{\mathrm{18}_{\mathrm{F}}}$	2.48	50	292	1.11
0.63	Me ₃ Si ¹⁸ F	4.99	60	207	0.74
0.79	$Me_3Si^{18}F$	5.00	60	208	0.90
0.87	Me ₃ Si ¹⁸ F	10.39	65	207	0.93

Comparison between $^{18}{ m F}$ exchange and ligand substitution reactions involving ${ m UF}_6$

A close similarity between reactions of tungsten (VI) fluoride, methoxides with ${\rm Me_3}{\rm Si}^{18}{\rm F}$ or ${\rm Me_3}{\rm Si}^{OMe}$ has been noted previously [2], and a similar situation obtains for UF₆. For example, the lability of UF₆ towards ${\rm Me_3}{\rm Si}^{18}{\rm F}$ is paralleled by facile, low-temperature substitution reactions between UF₆ and ${\rm Me_3}{\rm Si}^{OMe}$ to give UF_{6-n} (OMe)_n, ${\rm n=1-6}$. The fluorine ligands in the products undergo rapid, intermolecular exchange [4]. Reactions between UF₆ and BCl₃ [5] or B(OTeF₅)₃ [6] which lead to UCl₆ and U(OTeF₅)₆ respectively, may be

ompared with the behaviour of UF $_6$ towards BF $_2^{18}$ F. Substitution reactions involving WF $_6$ are very much slower, and complete replacement of F- by other ligands is often not achieved [e.g.2]. The difference in lability between a U^{VI}-F and a W^{VI}-F bond is one of the factors responsible for the difference in chemical reactivity between the two hexafluorides.

$^{18}\mathrm{F}$ Exchange between UF $_{6}^{-}$ and BF $_{2}^{18}\mathrm{F}$ or UF $_{5}^{18}\mathrm{F}$

 $^{18}{\rm F}$ exchange reactions between the hexafluorouranate(V) anion, with $^{Cu}{\rm II}$ or $^{TI}{\rm III}$ counter-cations, and $^{BF}{\rm F}$ at room temperature result in values of f > 1, both in MeCN solution and under heterogeneous conditions (Table 2). The most obvious explanation is that both $^{18}{\rm F}$ exchange, and retention of small quantities of $^{BF}{\rm 2}^{18}{\rm F}$ by the salts, occur. Mass balance data are consistent with retention, and the near i.r. spectrum of $^{UF}{\rm G}^{\rm I}$ in MeCN, to which $^{BF}{\rm 3}$ has been added, shows that both $^{UF}{\rm G}^{\rm I}$ and $^{UF}{\rm G}^{\rm (NCMe)}{\rm MeCN}$ [7] are present. Evidently transfer of F ion from $^{UF}{\rm G}^{\rm I}$ to $^{BF}{\rm G}^{\rm NCMe}$ occurs to some extent. Although it is possible that the $^{18}{\rm F}$ activity is retained as $^{BF}{\rm 2}^{\rm 18}{\rm F}\cdot{\rm NCMe}$ rather than $^{BF}{\rm 3}^{\rm 18}{\rm F}^{\rm I}$, this is less likely in view of the high degree of dissociation found for $^{BF}{\rm 3}^{\rm NCMe}$ in the gas phase at ambient temperature [8].

 $^{18}\mathrm{F}$ exchange between solid UF $_6^{-}$ salts and gaseous UF $_5^{18}\mathrm{F}$ at room temperature is substantial, f>0.72 (Table 2), but there is no evidence for retention. Rapid exchange between these species in MeCN has been reported previously [9].

Clearly the UF_6^- ion is a good donor in both thermodynamic and kinetic senses. In this respect it is similar to the hexafluorotungstate(V) anion [10].

$^{18}{ m F}$ Exchange between $\alpha-$ or $\beta-$ UF $_5$ and Lewis acid fluorides under heterogeneous conditions

The two structural modifications of uranium pentafluoride behave very differently towards BF $_2^{\ 18}$ F at room temperature. For β - UF $_5$ under the conditions used, f > 1, whereas between α - UF $_5$ and BF $_2^{\ 18}$ F far less interaction is observed (Table 3). Mass balance data from β - UF $_5$ reactions indicate the possible retention of BF $_3$ by β - UF $_5$, although attempts to verify this spectroscopically were unsuccessful.

 $^{18}\mathrm{F}$ Exchange reactions between UF $_6^-$ and BF $_2^{18}\mathrm{F}$ or UF $_5^{18}\mathrm{F}$

TABLE 2

	Reactants			Time	Temperature	Fraction exchanged
	mmol			min	к	f
UF ₆ , Cu ^{II} Salt	0.59	BF ₂ ¹⁸ F	0.61	75	293	1.38
UF ₆ , Tl ^{III} Salt in MeCN	0.73	BF ₂ ¹⁸ F	0.46	60	294	1.18
Cu(UF ₆) ₂ 5MeCN	0.35	BF218F	0.61	60	293	1.34
T1 (UF ₆) 25MeCN	0.12	BF ₂ ²¹⁸ F	0.46	65	294	1.48
Cu (UF ₆) 25MeCN	0.29	UF 18 F	0.91	40	292	0.72
Cu (UF ₆) 25MeCN	0.24	BF 218 F 218 F UF 518 F UF 5	0.55	40	293	0.81

Although UF $_5$ forms complexes with the strong Lewis acid antimony pentafluoride [11], and evidence for complexation with arsenic pentafluoride in anhydrous HF below room temperature has been reported [12], the possibility of complexation between β - UF $_5$ and the weaker Lewis acid, BF $_3$ was surprising. Accordingly interactions between β - or α - UF $_5$ and [18 F]-labelled BF $_3$, phosphorus pentafluoride, or sulphur tetrafluoride were examined in more detail by following the transfer of 18 F activity from gas-to-solid with time. Typical plots of 18 F count rate versus time for gas-plus-solid, gas only, and the derived plot of solid count rate versus time are shown in Figure 1 for the BF $_2$ BF, β -UF $_5$ system. Derived solid count rate versus time plots for the systems β - UF $_5$, PF $_4$ F or SF $_3$ BF are shown in Figure 2. In all cases the decrease in 18 F count rate observed in the gas

In all cases the decrease in ¹⁶F count rate observed in the gas phase is too great to be accounted for solely by ¹⁸F exchange. This, and the rapid increase in the β - UF₅ count rate with time, can be accounted for if ¹⁸F exchange occurs via a strongly adsorbed, surface species which is retained to some extent by β - UF₅. Equilibrium

TABLE 3

18 _F	Exchange	reactions	between	$BF_2^{18}F$	and	β-	or	α-	UF
	,			2					5

UF ₅		BF ₂ ¹⁸ F	Time	Temperature	Fraction exchanged
mmol		mmol	min	К	f
3- UF ₅	0.23	0.22	50	293	1.29
8- UF ₅	0.29	0.61	55	293	1.24
3- UF ₅	1.11	0.93	60	293	1.15
3- UF5	0.14	0.22	100	293	1.25
ı- UF	0.48	0.70	55	293	0.24
u- UF	0.26	0.70	55	293	0.30
u- UF ₅	0.21	2.73	60	293	0.22

distribution of $^{18}{\rm F}$ was not observed in these experiments unless a very small sample of β - UF $_5$ was used, however the f values obtained (Table 4) indicate that the degree of interaction increases in the order SF $_3$ $^{18}{\rm F}$ < BF $_2$ $^{18}{\rm F}$ < PF $_4$ $^{18}{\rm F}$, the order of increasing Lewis acidity. Similar behaviour was found between β - UF $_5$ and [$^{18}{\rm F}$]-labelled gaseous UF $_6$, WF $_6$, or Me $_3$ SiF, however interpretation of these systems is complicated by condensation at the β - UF $_5$ surface during the reaction.

Confirmation of a surface species formed by SF_4 at β - UF_5 is provided by using ^{35}S as a tracer. Admission of $^{35}SF_4$ to β - UF_5 results in the immediate detection of a surface β - count rate which remains constant over 2h. It is unaffected by removal of gaseous $^{35}SF_4$, admission of additional $^{35}SF_4$, or by admission of inactive SF_4 .

In marked contrast to the behaviour of β - UF $_5$, 18 F count rates produced in a α - UF $_5$ by reaction with BF $_2$ 18 F, PF $_4$ 18 F, or SF $_3$ 18 F are small, and only small increases with time are observed. Under conditions comparable to those used in Figures 1 and 2 and Table 4,f values are < 0.1. A small surface 35 S count rate is detectable when 35 SF $_4$ is admitted to α - UF $_5$ but it decreases to zero when the gas is removed, and no retention is observed.

Fig. 1. 18 F count rate vs. time for β - UF₅ (0.93 mmol) + BF₂ 18 F (2.81 mmol); (a) gas + solid, (b) gas, (c) solid, derived from (a) - (b).

Fig. 2. Derived $^{18}{\rm F}$ count rate $\underline{\rm vs}$. time from solid; (a) $\rm \beta-UF_5$ (0.42 mmol) + PF $_4^{18}{\rm F}$ (2.75 mmol), (b) $\rm \beta-UF_5$ (0.66 mmol) + SF $_3^{18}{\rm F}$ (2.75 mmol).

TABLE 4

 $^{18}{\rm F}$ Exchange reactions at room temperature between ${\rm \beta-~UF}_5$ and ${\rm BF_2}^{18}{\rm F}$, ${\rm PF_4}^{18}{\rm F}$, or ${\rm SF_3}^{18}{\rm F}$

β- UF ₅	XF _n	Time	Fraction exchanged
mmol	mmol	min	f
0.93	2.81 (BF ₂ ¹⁸ F)	95	0.91
0.93	2.95 (BF ₂ ¹⁸ F)	95	0.66
0.24	1.80 (BF 2 18 F)	82	1.58
0.45	3.08(PF ₄ ¹⁸ F)	120	2.34
0.42	2.75 (PF ₄ ¹⁸ F)	120	2.04
0.52	1.62(SF ₃ ¹⁸ F)	120	0.72
0.66	2.75 (SF ₃ ¹⁸ F)	100	0.67

The different behaviour of α - and β - UF $_5$ towards these Lewis acid fluorides can be compared with their structures. α - UF $_5$ contains octahedrally coordinated U V with trans-F-bridges [13], whereas β - UF $_5$ is [UF $_{6/2}$ F $_2$] $_{\infty}$, in which the coordination polyhedron about U V is intermediate between a square antiprism and a dodecahedron [14]. Retention of 35 SF $_4$ by a CsF fluoride surface has been demonstrated previously [15], and the retention of 35 SF $_4$ by β - UF $_5$, and by implication that of BF $_2$ ¹⁸F and PF $_4$ ¹⁸F, suggests that β - UF $_5$ has more basic surface sites for the adsorption of Lewis acid fluorides than does α - UF $_5$. This may be a consequence of the greater extent of F-bridging in the β - isomer.

$^{18}{ m F}$ Exchange and ligand substitution reactions involving UF $_{ m S}$

The behaviour of BF $_2^{18}$ F towards UF $_5$ in MeCN at room temperature is very similar to that observed for β - UF $_5$ in the absence of a solvent in that f values > 1 are observed (Table 5). Me $_3$ Si 18 F behaves similarly, and even below room temperature, significant interaction is observed (Table 5). In view of these results, substitution of F- ligands in UF $_5$ using BX $_3$ or Me $_3$ Six reagents should be facile.

TABLE 5 $$^{18}{\rm F}$$ Exchange reactions between UF in MeCN and BF $_2^{18}{\rm F}$ or Me $_3{\rm Si}^{18}{\rm F}$

UF ₅ *	BF ₂ ¹⁸ F or I	Me ₃ Si ¹⁸ F	Time	Temperature	Fraction exchanged
mmol	mm	ol	min	К	f
0.29	BF ₂ ¹⁸ F	0.39	55	293	1.52
0.33	BF 2. F	0.37	45	293	1.50
0.51	BF ₂ ¹⁸ F	2.74	70	293	1.13
0.59	$Me_3^2Si^{18}F$	4.48	50	294	1.16
0.55	Me ₂ Si ¹⁸ F	4.30	55	294	1.19
0.49	Me_Si ¹⁸ F	3.93	60	296	0.97
0.80	Me ₃ Si ¹⁸ F	6.50	60	273	0.50
0.42	Me ₃ Si ¹⁸ F	5.02	75	273	0.58
0.50	Me ₃ Si ¹⁸ F	2.96	65	208	0.40

^{*} In MeCN (3cm 3). $^+$ Heterogeneous conditions, no solvent, β - UF $_{\rm g}$.

It has been shown elsewhere that α - or β - UF $_5$ react with a large excess of boron trichloride at ambient temperature, in the absence of a solvent, to give β - uranium pentachloride [16]. We find that when the mole ratio β - UF $_5$:BCl $_3$ is 1:2, substitution is not complete. The products are a mixture of haloboranes, BF $_{3-n}$ Cl $_n$, n = 0 - 3, and a brown solid whose near i.r. spectrum in MeCN (Figure 3a) indicates the presence of UV chlorofluorides. The spectrum is distinct from that of UCl $_5$ in MeCN, but resembles that of 'UF $_2$ Cl $_3$ ' the product obtained from the reaction of UF $_5$ in MeCN with trimethylchlorosilane,

Fig. 3. Near i.r. - visible spectra in MeCN of (a) the solid product from β - UF $_5$ + 2BCl $_3$ [U V] \sim 0.2 mol dm $^{-3}$, (b) the solid product from UF $_5$ + B[OCCl(CF $_3$) $_2$] $_3$ in MeCN, [U V] \sim 0.3 mol dm $^{-3}$, (c) the reaction mixture 2.9 UF $_5$ + B[OCCl(CF $_3$) $_2$] $_3$ in MeCN, [U V] \sim 0.1 mol dm $^{-3}$, (d) UF $_5$ \sim 0.14 mol dm $^{-3}$.

1:3 mole ratio. This may not be a single compound [17]. Similar behaviour is observed for ${\rm UF}_5$ and ${\rm BCl}_3$, 1:1 mole ratio, in MeCN. Redistribution reactions of F and Cl at boron are facile, both in the gas phase [18] and in MeCN solution [19], also ${\rm UF}_5$ and ${\rm UCl}_5$ undergo halogen redistribution in MeCN [17]. However, these reactions alone are not sufficient to account for the behaviour observed, and it is necessary to postulate that at least some of the halogen exchange reactions between ${\rm U}^{\rm V}$ and boron chlorofluorides are reversible. This is not the case for Me $_3{\rm Si}^-$ versus ${\rm U}^{\rm V}$ exchange [17].

Reactions between UF $_5$ and tris[1-chloro-1-(trifluoromethy1)-2,2,2,-trifluoroethy1] borate in MeCN are facile at room temperature, but do not yield the expected UF $_{5-n}$ [OCC1(CF $_3$) $_2$] $_n$ derivatives. The products obtained are BF $_3$, hexafluoroacetone, and UV chlorofluorides. To some extent the identities of the latter depend on the stoichiometry used. The near i.r. spectrum of the product from a 1:1 reaction is virtually identical to that obtained from UF $_5$ + 2BCl $_3$ (Figure 3a and b), and an identical spectrum is obtained from a 3:2, UF $_5$: B[OCC1(CF $_3$) $_2$] $_3$ reaction mixture in MeCN. The spectrum of 3UF $_5$ + B[OCC1(CF $_3$) $_2$] $_3$ in MeCN is intermediate between those of UF $_5$ and the 1:1 product (Figure 3 b,c, and d), and resembles the spectrum of 'UF $_4$ C1', obtained from UF $_5$ and Me $_2$ SiC1, 1:1 mole ratio, in MeCN [17].

Apparently the U^V-OCCl(CF₃)₂ moiety is unstable with respect to the elimination of (CF₃)₂CO and the formation of a U^V-Cl bond. The alternative explanation, that B[OCCl(CF₃)₂]₃ decomposes to give BCl₃ and (CF₃)₂CO in the presence of UF₅(NCMe)_x, seems less plausible.

Trimethyl (methoxo) silane reacts with UF_{S} in MeCN at ambient temperature to give Me_SiF, in essentially quantitative yield for UF_: Me₃SiOMe mole ratios up to 1:2. The major uranium-containing compound under all conditions, mole ratios up to 1:50, is an insoluble, yellow-green solid, which analyses as UF $_3$ (OMe) $_2$. The solid's electronic spectrum shows the presence of U V , but is distinct from those of $\mathrm{UF}_{5}\left(\mathrm{NCMe}\right)$ and $\beta-\mathrm{UF}_{5}$. A prominent i.r. band at $1030\,\mathrm{cm}^{-1}$ suggests that bridging, rather than terminal MeO- ligands are present [20], and a strong absorption at 465, 505(sh) cm^{-1} is presumed to be due to U^{V} -F stretching modes. Solid UF₃(OMe)₂ undergoes substantial ¹⁸F exchange with Me₂Si¹⁸F at room temperature (Table 6), but little or no reaction occurs between $\mathrm{UF_3}(\mathrm{OMe})_2$ and $\mathrm{Me_3SiOMe}$ in the presence of MeCN. small quantity of abrown solid, soluble in MeCN and in benzene, is obtained after one week. Its electronic spectrum suggests that it is U(OMe) or a related species [21], but insufficient material was obtained for characterisation. An identical material is obtained as a trace product in reactions between UF_5 and $\mathrm{Me}_3\mathrm{SiOMe}$ in MeCN, when the solution is dilute.

TABLE 6

$^{18}_{ m F}$	Exchange	reactions	between	UF, (OMe),	and $Me_3Si^{18}F$
	•			3 2	- 3

UF ₃ (OMe) ₂	Me ₃ Si ¹⁸ F	Time	Temperature	Fraction exchanged
mmol	mmol	min	К	f
0.21	4.13	50	293	0.82
0.43	2.75	50	293	0.84
0.43	3.30	45	294	0.82
0.36	3.30	50	294	0.64

Although the evidence is not definitive, the solid UF $_3$ (OMe) $_2$ appears to be a single compound rather than a fortuitous mixture. Its difference in behaviour towards Me $_3$ Si 18 F and Me $_3$ SiOMe could be a thermodynamic consequence of the presumably, polymeric solid.

CONCLUSIONS

Although the interpretation of $^{18}{\rm F}$ exchange reactions involving UF₆, UF₅, or UF₆ is complicated by additional reactions which occur, notably complexation between Lewis acid fluorides and 8- UF₅, the results of this study indicate that both U^{VI}-F bonds in UF₆, and U^V-F bonds in a variety of environments, are labile with respect to substitution by $^{18}{\rm F}$. Their lability is an important factor in accounting for the chemical reactivity of these fluorides, and in some cases there is a close analogy between $^{18}{\rm F}$ exchange and ligand substitution behaviour.

The relationship between the lability and the electronic properties of a bond is speculative, but in a recent X-ray P.E. spectroscopic investigation of uranium halides, it has been proposed that the ionicity of uranium-halogen bonds incomesses with increasing oxidation state of U,

and with the halogen's electronegativity [22]. A degree of ionic character in U-F bonds is implied by the crystal structures of ${\rm SbF}_5$ adducts with UF $_5$ [11b], UOF $_4$, and UO $_2$ F $_2$ [23], and would account for the behaviour observed in this $^{18}{\rm F}$ study.

EXPERIMENTAL

All operations were carried in vacuo or in an Ar-atmosphere glove box (${\rm H_2O}$ < 5 p.p.m.). Synthesis and spectroscopic procedures have been described previously [24]. The fluorides UF₆, WF₆, PF₅, and BF₃ were commercial products which were purified by low temperature trap-to-trap distillation over activated NaF. SF₄ was prepared from S₈ and IF₅ and purified via its BF₃ adduct [25]. The reagents Me₃SiF, Me₃SiOMe, and BCl₃ (all commercial products) were purified by low temperature distillation, and were stored over activated 4A molecular sieves. B[OCC1(CF₃)]₃ was prepared from BCl₃ and (CF₃)₂CO [26]; its mp. agreed with that previously reported. Cu¹¹ and Tl¹¹¹ hexafluorouranates(V) were prepared as reported previously [9], and α - and β - UF₅ according to literature methods [13,7]. MeCN (Rathburn HPLC grade) was purified and dried by a modification of a standard procedure [27].

Radioactivity measurement

¹⁸F activity was determined using a NaI well scintillation counter (Ekco and Nuclear Enterprises), well dimensions 1.56 x 0.78 ins. diameter, samples being contained in calibrated Pyrex ampoules (ca. 7 or 62 cm³) fitted with P.T.F.E., glass stop-cocks. Calibrated double limb counting tubes (ca. 62 cm³) were used to study exchange with time in gas-solid reactions, each limb being intercalibrated before use. Reproducible counts were obtained in all cases, and linear count-rate versus pressure relationships were obtained for all volatile compounds studied.

Experiments involving 35 S were performed in an evacuable Pyrex reaction vessel incorporating two, intercalibrated Geiger-Muller detectors to allow surface 35 S activity to be determined directly [28].

Preparation of labelled compounds

 $^{18}{\rm F}$ was prepared by the sequence $^6{\rm Li}\,({\rm n},\alpha)^3{\rm H};$ $^{16}{\rm O}\,(^3{\rm H},{\rm n})^{18}{\rm F}$ using the Scottish Universities' Research Reactor, East Kilbride. Work up of the irradiated product gave Cs $^{18}{\rm F}\,({\rm aq.})$ [29] which was evaporated to dryness and dried in vacuo above 373 K. Volatile fluorides were labelled by exchange (lh) with Cs $^{18}{\rm F}$ (ca.lg; 20 µCi) in a Monel metal bomb (95 cm 3) under the following conditions: BF $_2^{18}{\rm F}$, 2.5 - 3.0 x $^{10}{\rm Im}\,({\rm mol})$ Torr, 358 K; PF $_4^{18}{\rm F}$, 2.5 - 3.0 x $^{10}{\rm Im}\,({\rm mol})$ Torr, 378 K; Me $_3{\rm Si}^{18}{\rm F}$, 10-20 mmol, 298 K; WF $_5^{18}{\rm F}$, 2-5 mmol, 313 K; UF $_5^{18}{\rm F}$ and SF $_3^{18}{\rm F}$ were prepared by exchange with BF $_2^{18}{\rm F}$ at 298 and 95 K respectively, exchange in the latter case occurring via $_3^{18}{\rm F}$]-SF $_3^{18}{\rm F}$ which was decomposed using Et $_2^{18}{\rm F}$ 0. $_3^{18}{\rm F}$ 1 was prepared as previously described [25]. Radiochemical purity of $_3^{18}{\rm F}$ 1-labelled compounds was established by $_3^{18}{\rm F}$ 1 respectrum and half-life determinations.

Exchange reactions

 $^{18}\mathrm{F}$ exchange reactions were carried out in counting vessels, mixtures being made up by weight, or, in the case of [$^{18}\mathrm{F}$]-labelled BF $_3$, PF $_5$, or SF $_4$, using a calibrated manifold and Bourdon gauge (Heise, \pm 1 Torr). The initially active reagent was counted prior to its addition, and both components were counted after their separation by vacuum distillation. Radiochemical balances were > 95% and mass balances > 98%, however in reactions involving β - UF $_5$ or UF $_6$ salts, the solids consistently showed small mass increases (> 35 mg) after reaction. The stoichiometries and specific activities used were chosen to minimise counting errors.

Exchange behaviour was compared in terms of the fraction of 18 F activity exchanged (f) determined by

$$f = \frac{A_1}{A_1 + A_2} \left(\frac{xm_1}{xm_1 + ym_2} \right)^{-1} = \frac{(A_0 - A_2)(xm_1 + ym_2)}{A_0 xm_1}$$

 ${\bf A_1}$ and ${\bf A_2}$ count s⁻¹ are the count rates, corrected for decay, after exchange between m₁ and m₂ mmol of reactants (1 being inactive initially) containing respectively x and y F atoms. ${\bf A_0}$ count s⁻¹ is the corrected count rate of reactant 2 before exchange. The second relationship was used in gas-solid reactions, where counting efficiencies of the two reactants were significantly different.

The distribution of $^{18}\mathrm{F}$ activity with time in UF $_5$, XF $_n$ systems was studied by loading a known mass of UF $_5$ into one limb of a double limb counting vessel, and condensing a measured quantity of $[^{18}\mathrm{F}]$ -XF $_n$, whose count rate had been determined, into the other limb. The gas was warmed rapidly to room temperature, and count rates were determined from alternate limbs at regular intervals. After a specified time, the components were counted separately, and f values calculated. Count rates for the solid component at various times during the reaction were obtained by subtraction of the gas count rate from that of gasplus-solid, using the plots of count rate versus time.

The interaction of $^{35}\mathrm{SF}_4$ with α - or β - UF₅ was studied using the procedure previously developed for $^{35}\mathrm{SF}_4$ or $^{36}\mathrm{C1F}$ with CsF [10]. In some experiments treatment of α - UF₅ with $^{35}\mathrm{SF}_4$ or SF₃ $^{18}\mathrm{F}$ resulted in a green colouration of the solid's surface, suggesting the possibility of α + β isomerisation. However the radiochemical behaviour of the two isomers was always different, and there was no evidence of a chemical reaction. α - UF₅ appeared to be more susceptible to trace hydrolysis than was the β - isomer.

Substitution reactions of UF,

(a) With BCl₃

A mixture of β - UF $_5$ (1.74 mmol) and BCl $_3$ (3.48 mmol), allowed to react at room temperature for 0.5 h, gave a dark brown solid and volatile material. The latter was identified by i.r. spectroscopy as a mixture of BCl $_{3-n}$ F $_n$, n = 0-3 [18]. Addition of MeCN to the solid produced initially a yellow, and finally a green solution, whose electronic spectrum (Figure 3a) indicated that U V chlorofluorides [17] were present. A mixture of β - UF $_5$ (1.84 mmol) and BCl $_3$ (1.81 mmol) in MeCN (6 cm 3), allowed to react at room temperature for 18 h, gave a

green solid after removal of BCl $_{3-n}$ F $_n$. The i.r. spectrum of the solid indicated the presence of co-ordinated MeCN, in particular the presence of BCl $_3$.NCMe [30]. The electronic spectrum of the solid redissolved in MeCN, was very similar to Figure 3a, being identical in the 600-700 and 900-1100 nm region, and differing only in relative intensities of the bands in the 1200-1500 nm region.

(b) With B[OCC1(CF₃)₂]₃

A mixture of β - UF₅ (1.56 mmol) and B[OCC1(CF₃)₂]₃ (1.54 mmol) in MeCN (6 cm³), allowed to react at room temperature for 18 h, gave a yellow-green solution. Removal of volatile material, shown to be a mixture of $(CF_3)_2CO$, BF_3 , and MeCN by i.r. spectroscopy, left a green solid. The electronic spectrum of the latter, redissolved in MeCN, (Figure 3b) was almost identical to that obtained from β - UF₅ + 2BCl3. The solid's i.r. spectrum contained bands due to co-ordinated MeCN, and a strong band at 505 cm⁻¹. The electronic spectrum of $\rm \beta-\ UF_5$ (0.38 mmol) and B[OCCl(CF3)2]3 (0.28 mmol) in MeCN (4 cm 3) was identical to Figure 3b, and that obtained from $\beta-$ UF $_5$ (0.41 mmol) and $B[OCC1(CF_3)_2]_3$ (0.14 mmol) in MeCN (4 cm³) (Figure 3c) was intermediate between those of Figure 3b and UF_5 in MeCN (Figure 3d). In neither case did the spectrum change with time. The reaction between $\beta\text{--UF}_{\underline{c}}$ (0.62 mmol) and B[OCCl(CF_3)₂]₃ (1.86 mmol) in MeCN (6 cm³) was similar to those described above, but the solid product appeared to contain unreacted borate.

(c) With Me₃SiOMe

A mixture of β - UF₅ (0.33 mmol), Me₃SiOMe (0.33 mmol) and MeCN (2.08 g), allowed to react at room temperature for lh, gave a yellow-green solid and a brown solution. The volatile material was a mixture of MeCN and Me₃SiF (0.35 mmol), identified by i.r. spectroscopy. A similar reaction between β - UF₅ (0.47 mmol) and Me₃SiOMe (0.94 mmol) in MeCN (3.71 g) gave Me₃SiF (0.89 mmol). Analysis of the yellow-green, insoluble solid isolated from β - UF₅ (3.3 mmol) and Me₃SiOMe (21.3 mmol) corresponded to <u>uranium(V) trifluoride dimethoxide</u>. Found C, 6.6; H, 1.6; F, 15.8; U, 66.7. C₂H₆F₃O₂U requires C, 6.7; H, 1.7; F, 16.0; U, 66.7%. The electronic spectrum of

UF $_3$ (OMe) $_2$ (Nujol mull) was: $\lambda_{\rm max}$ 1565 (m), 1430 (w,br), 1045 (m), 885 (sh) nm. The spectrum of β - UF $_5$, obtained under similar conditions was: $\lambda_{\rm max}$ 1400 (s), 1370 (s), 1200 (m, br), 935 (s), 900 (sh) nm, and that of solid UF $_5$ (NCMe) was: $\lambda_{\rm max}$ 1430 (s), 1405 (sh), 1330 (vw), 1170 (sh), 1122 (w, br), 700 (w, br) nm. The spectra of solid products obtained using different mole ratios of reactants were identical.

ACKNOWLEDGEMENTS

We thank R.R. Spence and Staff at the Scottish Universities Research Reactor Centre, East Kilbride, for technical assistance, British Nuclear Fuels, PLC, for a gift of UF₆, and the SERC for financial support.

REFERENCES

- 1 Presented at the 10th International Symposium on Fluorine Chemistry, 1982; J. Fluorine Chem. 21 (1982) 93, abst. P-13. For Part VII, see ref. 15.
- 2 R.T. Poole and J.M. Winfield, J. Chem. Soc., Dalton Trans., (1976)
- 3 C.J.W. Fraser, D.W.A. Sharp, G. Webb, and J.M. Winfield, J. Chem. Soc., Dalton Trans., (1972) 2226.
- 4 E.A. Guellar and T.J. Marks, Inorg. Chem., 20 (1981) 2129.
- 5 T.A. O'Donnell, D.F. Stewart, and P. Wilson, Inorg. Chem., <u>5</u> (1966) 1438.
- 6 K. Seppelt, Chem. Ber., <u>109</u> (1976) 1046; L.K. Templeton, D.H. Templeton, N. Bartlett, and K. Seppelt, Inorg. Chem., <u>15</u> (1976) 2720.
- 7 J.A. Berry, A. Prescott, D.W.A. Sharp, and J.M. Winfield, J. Fluorine Chem., 10 (1977) 247.
- 8 A.W. Laubengayer and D.S. Sears, J.Am. Chem. Soc., 67 (1945) 164.
- 9 J.A. Berry, R.T. Poole, A. Prescott, D.W.A. Sharp, and J.M. Winfield, J. Chem. Soc., Dalton Trans., (1976) 272.
- 10 A Prescott, D.W.A. Sharp, and J.M. Winfield, J. Chem. Soc., Dalton Trans., (1975) 934.
- 11 (a) R. Bougon and P. Charpin, J. Fluorine Chem., <u>14</u> (1979) 235; (b) W. Sawodny, K. Rediess and U. Thewalt, Z. Anorg. Allg. Chem., 469 (1980) 81.

- 12 B. Frlec and D. Gantar, J. Fluorine Chem., 16 (1980) 633.
- 13 P.G. Eller, A.C. Larson, J.R. Peterson, D.D. Ensor, and J.P. Young Inorg. Chim. Acta, 37 (1979) 129
- 14 R.R. Ryan, R.A. Penneman, L.B. Asprey, and R.T. Paine, Acta
 Crystallogr., Sect. B, 32 (1976) 3311; J.C. Taylor and A.B. Waugh,
 J. Solid State Chem., 35 (1980) 137.
- 15 G.A. Kolta, G. Webb, and J.M. Winfield, Appl. Catal., 2 (1982) 257.
- 16 D. Brown, J.A. Berry, and J.H. Holloway, J. Chem. Soc., Dalton Trans., (1982) 1385.
- 17 J.A. Berry, J.H. Holloway, and D. Brown, Inorg. Nucl.Chem. Lett., 17 (1981) 5.
- 18 L.P. Lindeman and M.K. Wilson, J. Chem. Phys., <u>24</u> (1956) 242;
 D.F. Wolfe and G.L. Humphrey, J. Mol. Struct., 3 (1969) 293.
- 19 J.S. Hartman and J.M. Miller, Adv. Inorg. Chem. Radiochem., 21 (1978) 147.
- 20 D.C. Bradley and A.H. Westlake, Proc. Symp. Co-ord. Chem., Tihans, Hungary, M. Beck (ed.), (1965) 309.
- 21 D.G. Karraker, Inorg. Chem., 3 (1964) 1618.
- 22 E. Thibaut, J.-P. Boutique, J.J. Verbist, J.-C. Levet, and H. Noël, J.Am. Chem. Soc, 104 (1982) 5266.
- 23 R. Bougon, J. Fawcett, J.H. Holloway, and D.R. Russell, J.Chem.Soc. Dalton Trans., (1979) 1881; J. Fawcett, J.H. Holloway, D. Laycock, and D.R. Russell, J. Chem. Soc., Dalton Trans., (1982) 1355.
- 24 C.J. Barbour, J.H. Cameron, and J.M. Winfield, J. Chem. Soc., Dalton Trans., (1980) 2001.
- 25 G.A. Kolta, G. Webb, and J.M. Winfield, J. Fluorine Chem., <u>19</u> 1981/82) 89.
- 26 E.W. Abel, N. Giles, D.J. Walker, and J.N. Wingfield, J. Chem. Soc. (A), (1971) 1991.
- 27 M. Walter and L. Ramaley, Anal. Chem., 45 (1973) 165.
- 28 A.S. Al-Ammar and G. Webb, J. Chem. Soc., Faraday Trans $\underline{1}$, 74 (1978) 195.
- 29 J.E. Whitley, Scottish Research Reactor Centre Report, No. SRRC 26/68; Nucl. Sci. Abs., 22 (1968) 30592.
- 30 D.F. Shriver and B. Swanson, Inorg. Chem., 10 (1971) 1354.